반응형
5.1 20 뉴스그룹 데이터 준비 빛 특성 추출
- 20 뉴스그룹 데이터셋: 텍스트 마이닝에서 문서 분류의 성능을 측정하기 위해 가장 많이 사용되는 데이터셋 중 하나
5.1.1 데이터셋 확인 및 분리
- 사이킷런 20 뉴스그룹 데이터 특징
- categories 매개변수를 이용해 20개의 topic 중에서 원하는 토픽을 선택할 수 있다.
- remove로 필요 없는 데이터를 삭제할 수 있다
- 각 데이터셋 내에서 .data는 텍스트의 내용을, .target은 숫자로 표시된 라벨을 가져오는 데 사용된다
from sklearn.datasets import fetch_20newsgroups
#20개의 토픽 중 선택하고자 하는 토픽을 리스트로 생성
categories = ['alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space']
#학습 데이터셋을 가져옴
newsgroups_train = fetch_20newsgroups(subset='train',
#메일 내용에서 hint가 되는 부분을 삭제 - 순수하게 내용만으로 분류
remove=('headers', 'footers', 'quotes'),
categories=categories)
#검증 데이터셋을 가져옴
newsgroups_test = fetch_20newsgroups(subset='test',
remove=('headers', 'footers', 'quotes'),
categories=categories)
print('#Train set size:', len(newsgroups_train.data))
print('#Test set size:', len(newsgroups_test.data))
print('#Selected categories:', newsgroups_train.target_names)
print('#Train labels:', set(newsgroups_train.target))
"""
#Train set size: 2034
#Test set size: 1353
#Selected categories: ['alt.atheism', 'comp.graphics', 'sci.space', 'talk.religion.misc']
#Train labels: {0, 1, 2, 3}
"""
print('#Train set text samples:', newsgroups_train.data[0])
print('#Train set label smaples:', newsgroups_train.target[0])
print('#Test set text samples:', newsgroups_test.data[0])
print('#Test set label smaples:', newsgroups_test.target[0])
"""
#Train set text samples: Hi,
I've noticed that if you only save a model (with all your mapping planes
positioned carefully) to a .3DS file that when you reload it after restarting
3DS, they are given a default position and orientation. But if you save
to a .PRJ file their positions/orientation are preserved. Does anyone
know why this information is not stored in the .3DS file? Nothing is
explicitly said in the manual about saving texture rules in the .PRJ file.
I'd like to be able to read the texture rule information, does anyone have
the format for the .PRJ file?
Is the .CEL file format available from somewhere?
Rych
#Train set label smaples: 1
#Test set text samples: TRry the SKywatch project in Arizona.
#Test set label smaples: 2
"""
5.1.2. 카운트 기반 특성 추출
X_train = newsgroups_train.data #학습 데이터셋 문서
y_train = newsgroups_train.target #학습 데이터셋 라벨
X_test = newsgroups_test.data #검증 데이터셋 문서
y_test = newsgroups_test.target #검증 데이터셋 라벨
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(max_features=2000, min_df=5, max_df=0.5)
X_train_cv = cv.fit_transform(X_train) # train set을 변환
print('Train set dimension:', X_train_cv.shape)
X_test_cv = cv.transform(X_test) # test set을 변환
print('Test set dimension:', X_test_cv.shape)
"""
Train set dimension: (2034, 2000)
Test set dimension: (1353, 2000)
"""
for word, count in zip(cv.get_feature_names_out()[:100], X_train_cv[0].toarray()[0, :100]):
print(word, ':', count, end=', ')
## 00 : 0, 000 : 0, 01 : 0, 04 : 0, 05 : 0, 10 : 0, 100 : 0, 1000 : 0, 11 : 0, 12 : 0, 128 : 0, 129 : 0, 13 : 0, 130 : 0, 14 : 0, 15 : 0, 16 : 0, 17 : 0, 18 : 0, 19 : 0, 1987 : 0, 1988 : 0, 1989 : 0, 1990 : 0, 1991 : 0, 1992 : 0, 1993 : 0, 20 : 0, 200 : 0, 202 : 0, 21 : 0, 22 : 0, 23 : 0, 24 : 0, 25 : 0, 256 : 0, 26 : 0, 27 : 0, 28 : 0, 2d : 0, 30 : 0, 300 : 0, 31 : 0, 32 : 0, 33 : 0, 34 : 0, 35 : 0, 39 : 0, 3d : 0, 40 : 0, 400 : 0, 42 : 0, 45 : 0, 50 : 0, 500 : 0, 60 : 0, 600 : 0, 65 : 0, 70 : 0, 75 : 0, 80 : 0, 800 : 0, 90 : 0, 900 : 0, 91 : 0, 92 : 0, 93 : 0, 95 : 0, _the : 0, ability : 0, able : 1, abortion : 0, about : 1, above : 0, absolute : 0, absolutely : 0, ac : 0, accept : 0, acceptable : 0, accepted : 0, access : 0, according : 0, account : 0, accurate : 0, across : 0, act : 0, action : 0, actions : 0, active : 0, activities : 0, activity : 0, acts : 0, actual : 0, actually : 0, ad : 0, add : 0, added : 0, addition : 0, additional : 0, address : 0,
※ 해당 내용은 <파이썬 텍스트 마이닝 완벽 가이드>의 내용을 토대로 학습하며 정리한 내용입니다.
반응형
'텍스트 마이닝' 카테고리의 다른 글
BOW 기반의 문서 분류 (3) (0) | 2023.07.02 |
---|---|
BOW 기반의 문서 분류 (2) (0) | 2023.07.01 |
카운트 기반의 문서 표현 (5) (0) | 2023.06.29 |
카운트 기반의 문서 표현 (4) (0) | 2023.06.28 |
카운트 기반의 문서 표현 (3) (0) | 2023.06.27 |